Cách Tìm Hàm Truyền Pid

Pmùi hương pháp máy nhị không đề xuất mang lại quy mô toán học tập của đối tượng nhưng mà chỉ áp dụng mang đến một số trong những lớp đối tượng nhất mực.

Bạn đang xem: Cách tìm hàm truyền pid

1. Phương pháp Zieger-Nichols máy nhất: Phương thơm pháp này nhằm xác minh những tđắm đuối số K P , K I , K D đến bộ điều khiển PID bên trên cửa hàng giao động hàm truyền đạt thành khâu tiệm tính hàng đầu (1) để hệ kín đáo nhanh lẹ về cơ chế xác lập và độ quá kiểm soát và điều chỉnh không quá 40%...


*

Thiết kế cỗ tinh chỉnh và điều khiển PID Thiết Kế Sở Điều Khiển PIDZiegler cùng Nichols giới thiệu nhị phương pháp thực nghiệm nhằm khẳng định tsay đắm số bộ điềukhiển PID.Phương thơm pháp đầu tiên cần sử dụng quy mô xấp xỉ quán tính số 1 bao gồm trễ của đốitượng điều khiển: T sG(s)  ke delay (1) 1 TsPhương thơm pháp thiết bị hai ko nên đến mô hình tân oán học của đối tượng tuy vậy chỉ áp dụngmang đến một vài lớp đối tượng người sử dụng nhất quyết. 1.

Xem thêm: Cách Ngâm Rượu Ngọc Dương Để Sung Mãn Mỗi Khi Yêu, Cách Ngâm Rượu Ngọc Dương Dê Thơm Ngon Bổ Dưỡng

Phương pháp Zieger-Nichols lắp thêm nhất:Pmùi hương pháp này nhằm mục tiêu xác định những tham mê số K P , K I , K D cho cỗ điều khiển PID bên trên cơssinh hoạt xê dịch hàm truyền đạt thành khâu cửa hàng tính hàng đầu (1) nhằm hệ bí mật lập cập về chếđộ xác lập và độ quá điều chỉnh không quá 40%Đặc tính động học:Tại phía trên ta đang tế bào rộp cùng với trả thiết dao động hàm truyền của hệ thống là:Lưu Nhỏng Hòa – ĐKTĐ – KSTN – K50 1Thiết kế cỗ tinh chỉnh PID 6.25 13.5sG (s)  e 12.5s  1(Trên thực tiễn các thông số kỹ thuật Tdelay , T , k được khẳng định từ công năng đụng học của hệ hở)Nếu chọn các tmê say số đến cỗ điều khiển và tinh chỉnh PID theo phương thức Z-N -1 thì ta có: T Kp T .K KPhường   0.1481 , K I   0.0055 , K D  delay p  1 kTdelay 2Tdelay 2 2. Phương thơm pháp Zieger-Nichols vật dụng hai:Pmùi hương pháp Zieger-Nichols lắp thêm hai 1( t ) y( t ) _ k G  sPhương thơm pháp này cố gắng bộ tinh chỉnh PID trong hệ kín đáo bởi cỗ khuyếch đại,sau đó tăng kcho tới Lúc hệ nằm ở biên thuỳ bình ổn có nghĩa là hệ kín đáo trở thành khâu xê dịch điềuhòa.Lúc đó ta có Kgh và chu kỳ luân hồi của giao động chính là Tgh.Tsi số mang lại bộ tinh chỉnh và điều khiển PIDchọn theo bảng sau:Lưu Nhỏng Hòa – ĐKTĐ – KSTN – K50 2Thiết kế bộ điều khiển và tinh chỉnh PID Sở điều Kp Ti Td khiển Phường 0,5*Kgh ∞ 0 PI 0,45* Kgh 1 0 * Tgh 1.2 PID 0,6*Kgh 0,5*Tgh 0,125*Tgh>> =pade(13.5,3);>> sys=tf(6.25,<12.5 1>)*tf(num_delay,den_delay)Transfer function: -6.25 s^3 + 5.556 s^2 - 2.058 s + 0.3048-----------------------------------------------------12.5 s^4 + 12.11 s^3 + 5.004 s^2 + 0.9389 s + 0.04877>> rlocus(sys);>> =rlocfind(sys)Select a point in the graphics windowselected_point = 0.0000 + 0.1521ik = 0.3438p = -0.3985 + 0.6092i -0.3985 - 0.6092i -0.0000 + 0.1523i -0.0000 - 0.1523iLưu Như Hòa – ĐKTĐ – KSTN – K50 3Thiết kế bộ điều khiển và tinh chỉnh PID Root Locus 1.5 1 0.5 Imaginary Axis 0 ­0.5 ­1 ­1.5 ­0.5 0 0.5 1 1.5 2 Real Axis 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 ­0.2 0 50 100 150Lưu Nhỏng Hòa – ĐKTĐ – KSTN – K50 4Thiết kế cỗ tinh chỉnh và điều khiển PID>> = margin(k*sys)Gm = 1.0006Pm = 0.1256Wg = 0.1523Wp = 0.1521>> Tgh=2*pi/WgTgh = 41.2662Chọn tham số mang lại cỗ điều khiển PID ta có: KK p  0.6* Kgh  0.2063 , K I  P  0.01 , K D  K pTD  1.0640 TILưu Như Hòa – ĐKTĐ – KSTN – K50 5Thiết kế cỗ điều khiển PID 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0 trăng tròn 40 60 80 100 120 140 160 180 200 3. Phương pháp phụ thuộc vào điều kiện tối ưu chuẩn chỉnh H 2 :  2Chỉ tiêu về tối ưu là  e (t )  min 0Lưu Nlỗi Hòa – ĐKTĐ – KSTN – K50 6Thiết kế cỗ điều khiển và tinh chỉnh PIDfunction = run_pid() >>pid_model;pid0 = <0.2063 0.01 1.0640>;options = optimset("LargeScale","off","Display","iter",... "TolX",0.0001,"TolFun",0.0001);pid = lsqnonlin(